Сейсмичность

Карта сейсмической активности земли — Карта землетрясений сервиса Google

Сейсмическая карта России

Территория Российской Федерации, по сравнению с другими странами мира,
расположенными в сейсмоактивных регионах, в целом характеризуется
умеренной сейсмичностью.(для увеличения кликните по карте)

Исключение составляют регионы Северного
Кавказа, юга Сибири и Дальнего Востока, где интенсивность сейсмических
сотрясений достигает 9–10 баллов по 12-балльной макросейсмической шкале.
Согласно карт, 20.1% процентов территории РФ находится в зоне
7-балльной интенсивности, 6% в 8-балльной зоне, а 2% территории могут
быть подвержены 9-балльным сотрясениям в течение 50 лет.Зоны с
5-балльной интенсивностью обозначены светло-зеленым цветом, 6-балльная
зона — темно-зеленым, 7-балльная — желтым, 8-балльная — светло-красным,
зона землетрясений силой 9 баллов и выше обозначена темно-красным.

Как оценить сейсмический риск?

Цепочка сейсмического риска R представляет собой комбинацию сейсмической опасности A в данной точке и уязвимости V проблем.

рзнак равноВ×V{\ Displaystyle \ mathbf {R} = \ mathbf {A} \ times \ mathbf {V}}

Последствия землетрясения зависят от нескольких параметров:

  • уязвимость почвы (например , риск сжижения, сели, оползни);
  • уязвимость объектов и инфраструктуры  ;
  • частота и интенсивность землетрясения;
  • большая или меньшая близость и глубина к эпицентру (время подачи сигнала тревоги или срабатывания автоматических защитных устройств (например, остановка ядерных реакторов), подготовка аварийных служб и т. д. зависит от временного интервала между объявлением о землетрясении и проявление его последствий (некоторые землетрясения останутся сильными и без определенных предупреждающих знаков);
  • «эффект площадки», который локально усиливает сейсмические толчки (рыхлые поверхностные слои, геологические разрывы, край долины, холм, ледниковая долина );
  • возможное усугубление повреждений повторными толчками ( афтершоками );
  • вторичные события, такие как извержение или отсутствие потока лавы или выпадения материальных осадков (валуны, вулканический пепел ), выбросы ядовитых паров или дыма или образование одного или нескольких цунами;
  • соединение и переплетение нескольких бедствий в одном месте и в одно и то же время, возможно включая землетрясение + ядерную аварию. В Японии такое положение называется « гэнпацу-синсай ». Это выражение объединяет выражения Genpatsu (原 発), сокращение от слова «атомная электростанция» и shinsai (震災) «землетрясение». Это синергетическая ситуация риска и опасности , когда последствия двух ситуаций (сейсмической и радиологической) могут усугублять друг друга и значительно усложнять управление кризисными ситуациями и решение проблем. Так было несколько раз в Японии, особенно в марте 2011 года во время ядерной аварии на Фукусиме .

Первым шагом является оценка геологической уязвимости рассматриваемого района. В его основе:

  • функционирование сети сейсмометров (будет создана при необходимости) в исследуемом регионе. Для этого необходимы наблюдения в течение очень длительного периода, чем дольше сейсмичность зоны умеренная. Регистрация сейсмической активности в течение десяти лет без каких-либо событий не означает, что в долгосрочной перспективе, через 600 или 700 лет, сильных землетрясений не произойдет. Изучение сейсмических записей (всех местных и близлежащих землетрясений, даже небольших) позволяет лучше оценить среднюю и долгосрочную сейсмичность, а также максимально возможную магнитуду, повторяемость землетрясений, опасность цунами и т. Д.
  • геологические исследования (изучение разломов, положения в отношении тектоники плит и т. д.)
  • исторические исследования; Ученые и историки, работающие в тесном сотрудничестве, могут найти следы прошлых землетрясений. Это «историческая» сейсмология, которая возможна только в районах древних поселений и письменной цивилизации. Таким образом , имеется в Китае за 2700 лет архивов и Франции может проследить землетрясений до XI — го  века, но в Калифорнии, к примеру, не исторический рекорд старейшего землетрясения в 1800 году, что приблизительно, дата урегулирования области. Затем мы можем обратиться к археологии ( археосейсмологии ), а до исторического периода — к палеосейсмологии .
  • Дополнительно вмешиваются другие дисциплины:
    • неотектонический;
    • измерение колебаний грунта (от умеренного до сильного), оцениваемое с помощью соответствующей сети акселерометров, чтобы иметь абсолютный уровень и как можно больше данных о местных вариациях, связанных с «эффектами площадки»;
    • исследования «сейсмического микрорайонирования» (таким образом, в Японии исследования и карты могут выполняться в масштабе района).

Второй шаг — это перспективная оценка  : когда мы знаем недавнюю и древнюю сейсмологическую историю региона, мы можем получить представление о размере и возникновении разрушительных землетрясений, которые могут повлиять на регион, но также и. Это позволяет в определенной степени и в сочетании с текущими наблюдениями определить статистический риск землетрясения, происходящего в данном месте. Таким образом определяется « сейсмическая опасность » .

Третий этап — это подготовка (укрепление или реконструкция зданий или уязвимых инфраструктур, применение антисейсмических стандартов ) и управление рисками ( синдиники , учения, планы действий в чрезвычайных ситуациях и т. Д.).

Сибирь

Алтай, включая его монгольскую часть, и Саяны—один из наиболее сейсмоактивных внутриконтинентальных регионов мира. На территории России достаточно сильными местными землетрясениями характеризуется Восточный Саян, где известны землетрясения с М=7,0 и I 0 =9 баллов ( 1800 г 1829 г 1839 г 1950 г ) и обнаружены древние геологические следы (палеосейсмодислокации) таких и более крупных сейсмических событий. На Алтае самое крупное из последних землетрясений произошло 27 сентября 2003 г в высокогорном Кош-Агачском районе (М=7,5, I 0 =9–10 баллов). Менее значительные по магнитуде (М=6,0–6,6, I 0 =8–9 баллов) землетрясения происходили на Алтае и Западном Саяне и ранее. Крупнейшие сейсмические катастрофы в начале прошлого века имели место в Монгольском Алтае. К их числу относятся Хангайские землетрясения 9 и 23 июля 1905 г Первое из них, по определению американских сейсмологов Б. Гутенберга и Ч. Рихтера, имело магнитуду М=8,4, а сейсмический эффект в эпицентральной области составил I 0 =11–12 баллов. Магнитуда и сейсмический эффект второго землетрясения, по их же оценкам, близки к предельным величинам магнитуд и сейсмического эффекта — М=8,7, I 0 =12 баллов. Оба землетрясения ощущались на огромной территории Российской империи, на расстояниях до 2000 км от эпицентра. В Иркутской, Томской, Енисейской губерниях и по всему Забайкалью интенсивность сотрясений достигала 6–7 баллов. Другими сильными землетрясениями на сопредельной с Россией территории Монголии были Монголо-Алтайское ( 1931 г М=8,0, I 0 =10 баллов), Гоби-Алтайское ( 1957 г М=8,2, I 0 =11 баллов) и Моготское ( 1967 г М =7,8, I 0 =10–11 баллов).

Байкальская рифтовая зона — уникальный сейсмогеодинамический регион мира. Впадина озера Байкал представлена тремя сейсмоактивными котловинами — южной, средней и северной. Аналогичная зональность свойственна и проявлению сейсмичности восточнее озера, вплоть до реки Олёкма. Восточнее Олёкмо-Становая сейсмоактивная зона трассирует границу между Евразиатской и Китайской литосферными плитами (некоторые исследователи выделяют еще промежуточную, меньшую по площади, Амурскую плиту). На стыке Байкальской зоны и Восточного Саяна сохранились следы древних землетрясений с М=7,7 и выше ( I 0 =10–11 баллов). В 1862 г при землетрясении I 0 =10 баллов в северной части дельты реки Селенга ушел под воду участок суши площадью 200 км 2 с шестью улусами, в которых проживало 1300 чел., и образовался залив Провал. Среди относительно недавних крупных землетрясений — Мондинское ( 1950 г М=7,1, I 0 =9 баллов), Муйское ( 1957 г М=7,7, I 0 =10 баллов) и Среднебайкальское ( 1959 г М=6,9, I 0 =9 баллов). В результате последнего землетрясения дно в средней котловине озера опустилось на 15–20 м.

Верхояно-Колымский регион принадлежит поясу Черского, протягивающемуся в юго-восточном направлении от устья реки Лена к побережью Охотского моря, Северной Камчатке и Командорским островам. Самые сильные из известных в Республике Саха (Якутия) землетрясений — два Булунские ( 1927 г М=6,8 и I 0 =9 баллов каждое) в низовьях реки Лена и Артыкское ( 1971 г М=7,1, I 0 =9 баллов) — у границы Республики Саха (Якутия) с Магаданской областью. Менее значительные сейсмические события с магнитудой до М=5,5 и интенсивностью I 0 =7 баллов наблюдались на территории Западно-Сибирской платформы.

Арктическая рифтовая зона является северо-западным продолжением сейсмоактивной структуры Верхояно-Колымского региона, уходящей узкой полосой в Северный Ледовитый океан и соединяющейся на западе с аналогичной рифтовой зоной Срединно-Атлантического хребта. На шельфе моря Лаптевых в 1909 г и 1964 г произошли два землетрясения с магнитудой М=6,8.

Дальний Восток

Курило-Камчатская зона является классическим примером субдукции Тихоокеанской литосферной плиты под материк. Она протягивается вдоль восточного побережья Камчатки, Курильских островов и острова Хоккайдо. Здесь возникают самые крупные в Северной Евразии землетрясения с М=8,0 и сейсмическим эффектом I 0 =10 баллов. Структура зоны четко прослеживается по расположению очагов в плане и на глубине. Протяженность ее вдоль дуги примерно 2500 км по глубине — свыше 650 км толщина — около 70 км угол наклона к горизонту — до 50°. Сейсмический эффект на земной поверхности от глубоких очагов относительно невысок. Определенную сейсмическую опасность представляют землетрясения, связанные с деятельностью Камчатских вулканов ( 1827 г при извержении вулкана Авачинская Сопка интенсивность сотрясений достигала в Петропавловске-Камчатском 6–7 баллов). Самые сильные (М=8,0–8,5, I 0 =10–11 баллов) землетрясения возникают на глубине до 80 км в сравнительно узкой полосе между океаническим желобом, полуостровом Камчатка и Курильскими островами (1737, 1780, 1792, 1841, 1918, 1923, 1952, 1958, 1963, 1969, 1994, 1997 гг. и др.). Большинство из них сопровождалось мощными цунами высотой 10–15 м и более. Наиболее изучены Шикотанское ( 1994 г М=8,0, I 0 =9–10 баллов) и Кроноцкое ( 1997 г М=7,9, I 0 =9–10 баллов) землетрясения, возникшие у Южных Курильских островов и восточного побережья Камчатки. Шикотанское землетрясение сопровождалось волной цунами высотой до 10 м сильными афтершоками и большими разрушениями на островах Шикотан, Итуруп и Кунашир. Погибли 12 человек, причинен огромный материальный ущерб.

Сахалин представляет собой северное продолжение Сахалино-Японской островной дуги и трассирует границу Охотоморской и Евразиатской плит. До катастрофического Нефтегорского землетрясения ( 1995 г М=7,5, I 0 =9–10 баллов) сейсмичность острова представлялась умеренной и здесь ожидались лишь землетрясения интенсивностью до I 0 =6–7 баллов. Нефтегорское землетрясение было самым разрушительным из известных за все время на территории Российской Федерации. Погибло около 2000 чел. В результате полностью ликвидирован поселок Нефтегорск. Можно полагать, что техногенные факторы (бесконтрольная откачка нефтепродуктов) сыграли роль спускового механизма для накопившихся к этому моменту упругих геодинамических напряжений в регионе. Монеронское землетрясение ( 1971 г М=7,5), произошедшее на шельфе в 40 км юго-западнее острова Сахалин, на побережье ощущалось интенсивностью около 7 баллов. Крупным сейсмическим событием было Углегорское землетрясение ( 2000 г М=7,1, I 0 =9 баллов). Возникнув в южной части острова, вдалеке от населенных пунктов, оно практически не принесло ущерба, но подтвердило повышенную сейсмическую опасность острова Сахалин.

Приамурье и Приморье характеризуются умеренной сейсмичностью. Из известных здесь землетрясений пока только одно на севере Амурской области достигло магнитуды М=7,0 ( 1967 г I 0 =9 баллов). В будущем магнитуды потенциальных землетрясений на юге Хабаровского края также могут оказаться не менее М=7,0, а на севере Амурской области не исключены землетрясения с М=7,5 и выше. Наряду с внутрикоровыми, в Приморье ощущаются глубокофокусные землетрясения юго-западной части Курило-Камчатской зоны субдукции. Землетрясения на шельфе нередко сопровождаются цунами высотой до 3–4 м.

Чукотка и Корякское нагорье еще недостаточно изучены в сейсмическом отношении из-за отсутствия здесь необходимого числа сейсмических станций. В 1928 г у восточного побережья Чукотки возник рой сильных землетрясений с магнитудами M =6,9, 6.3, 6,4 и 6,2. Там же в 1996 г произошло землетрясение с М=6,2. В Корякском нагорье до 1991 г самым сильным из ранее известных было Хаилинское землетрясение 1991 г (М=7,0, I 0 =8–9 баллов). Еще более значительное землетрясение (М=7,6, I 0 =9–10 баллов) произошло в этой же эпицентральной области 21 апреля 2006 г В результате сильно пострадали населенные пункты Хаилино, Тиличики и Корф.

Сейсмический регламент

Исторический

Исторически при первых расчетах размеров землетрясений учитывались горизонтальные силы, равномерно распределенные по всей высоте конструкций, по аналогии с действием ветра на конструкции. Но быстро стало очевидно, что это действие должно было учитывать вес конструкций, и правила эволюционировали в сторону определения процента ускорения свободного падения, применяемого к массам, постоянного коэффициента на высоте, в d ‘других По условиям горизонтальные расчетные силы соответствовали процентному соотношению веса конструкции. Первые рекомендации в области предотвращения сейсмического риска для зданий, известные как «Рекомендации AS 55», опубликованные в 1955 году после землетрясения в Орлеансвилле ( Алжир ), определили такие проценты, которые варьируются в зависимости от зон сейсмичности и высоты зданий.

Нормативно-правовая база затем регулярно развивалась в зависимости от международных событий или в связи с развитием международного регулирования. В 1962 году паразитические правила PS 62/64 появились после землетрясения в Агадире ( Марокко ), произошедшего в29 февраля 1960 г.и оставил от 12 000 до 15 000 убитых, или около трети населения, и около 25 000 раненых. В 1969 году эти правила были преобразованы в Единый технический документ (DTU), правила PS 69, в результате консенсуса между профессионалами в области строительства и органами государственной власти.

Они были дополнены в году дополнением к правилам PS 69/82 (DTU P 06-003) с учетом уроков, извлеченных из землетрясения Эль-Аснам ( Алжир ) в 1980 году . Введена классификация на пять категорий в зависимости от количества людей, одновременно допущенных в учреждение. 5 — го  класса не влияет, это то , где много людей , является самым низким. Указ6 марта 1981 г. требуется, в частности, для индивидуальных жилищ в зоне сейсмичности 3 правил PS69, т.е. максимум 1 этаж на первом этаже в Вест-Индии, и для коллективных жилищ в зонах сейсмичности 2 и 3 правил PS69, то есть от 2 этажи на первом этаже в Вест-Индии и в некоторых районах Метрополии.

Правила PS 92 заменили их в 1992 году после различных крупных землетрясений в 1980-х годах ( Мехико в 1985 году , Спитак в Армении в 1988 году , Лома-Приета в Калифорнии в 1989 году ). Они дополнены правилами PS-MI89 / 92, более упрощенными, и которые касаются только домов на одну семью.

Наконец-то в новых рамках появляется указ 22 октября 2010 г. с учетом технических достижений в сейсмоустойчивом строительстве на основе правил Еврокода 8 (EC8) для гармонизации стандартов на европейском уровне.

Здания с «нормальным риском»

Правила, применимые от 1 — го мая 2011 определяет четыре класса зданий «нормального риска»:

Класс I: те, чья неудача представляет лишь минимальный риск для людей или социально-экономической деятельности;
Класс II: те, отказ которых представляет так называемый средний риск для людей;
Класс III: те, неудача которых представляет высокий риск для людей, и те, кто представляет такой же риск из-за их социально-экономической значимости;
Класс IV: те, чье функционирование важно для гражданской безопасности, обороны или поддержания общественного порядка.

Классифицированные объекты и здания, подверженные «особому риску»

К категории установок особой опасности относятся, согласно постановлению 14 мая 1991 г., «Здания, оборудование и сооружения, для которых воздействие на людей, имущество и окружающую среду даже незначительного ущерба в результате землетрясения не может ограничиваться непосредственной близостью к указанным зданиям, оборудованию и установкам» .

Карта поясов России

В отдельных регионах России землетрясения являются привычным явлением.

Наиболее опасными в этом плане считаются:

  • область Кавказских гор;
  • Алтай;
  • Восточная Сибирь;
  • Дальний Восток;
  • Камчатка;
  • остров Сахалин.

Эти области расположены как раз при приграничной зоне литосферных плит, поэтому тектоническая активность здесь наиболее высока.

Такие регионы отмечены на карте сейсмической активности России

Для определения степени опасности того или иного региона принимают во внимание не только интенсивность и частоту подземных толчков, но и численность населения в опасной области. Так, например, на Дальнем Востоке и в районе острова Сахалин землетрясения происходят гораздо чаще и имеют более высокую амплитуду по сравнению с Кавказом, однако плотность населения здесь значительно меньше, а значит возможный ущерб так же теоретически имеет меньшее значение. Однако в определенных ситуациях он может быть огромным

Однако в определенных ситуациях он может быть огромным.

Территория сейсмически активных регионов занимает около 20 % от общей площади России. Однако это не значит, что регионы, находящиеся в относительной безопасности, не могут столкнуться с подобным катаклизмом. В центральных областях могут происходить так называемые антропогенные землетрясения, вызванные деятельностью человека. В ходе такой деятельности (например, при добыче полезных ископаемых) происходит обрушение слоев горных пород. Это явление напоминает настоящий тектонический катаклизм, однако вызван он не природными силами, а самим человеком.

Что делать?

Предотвращать такое грозное явление, как землетрясение, люди еще не могут. И даже точно предсказать, когда и где оно случится, тоже не научились. А значит, нужно знать, как можно уберечь себя и близких во время подземных толчков.

Людям, живущим в таких опасных районах, нужно всегда иметь план действий на случай землетрясения. Так как стихия может застать членов семьи в разных местах, должна быть договоренность о месте встречи после прекращения толчков. Жилище должно быть максимально обезопашено от падения тяжелых предметов, мебель лучше всего прикрепить к стенам и полу. Все жители должны знать, где можно срочно отключить газ, электричество, воду, чтобы избежать пожаров, взрывов и ударов током. Лестницы и проходы не должны загромождаться вещами. Документы и некоторый набор продуктов и предметов первой необходимости должен быть всегда под рукой.

Начиная с детских садов и школ, население необходимо учить правильному поведению при стихийном бедствии, что повысит шансы на спасение.

Сейсмически активные районы России предъявляют особые требования как к промышленному, так и к гражданскому строительству. Сейсмостойкие здания сложнее и дороже строить, но затраты на их строительство — это ничто по сравнению со спасенными жизнями. Ведь в безопасности окажутся не только те, кто находится в таком здании, но и те, кто рядом. Не будет разрушений и завалов — не будет и жертв.

Алтай и Тыва

Для обоих этих регионов России характерны частые землетрясения, а причинами их появления являются сразу несколько факторов. Это и плита Индостана, движение которой привело к появлению гималайских гор, а также рифтовая зона в районе озера Байкал. В связи с этим сейсмическая активность в данном регионе постоянно увеличивается.

Наиболее известным за последнее время землетрясением, произошедшим здесь, стала катастрофа, случившаяся 27 сентября 2003 года. Сила подземных толчков составляла около 10 баллов по шкале Рихтера. Последствия этого землетрясения ощущались в Красноярске и Новосибирске. Оно нанесло серьезный урон шестью районам Алтайского края, при этом был практически полностью разрушен поселок Бельтир.

Если же говорить о Туве, то здесь местные жители больше всего запомнили землетрясения, произошедшее в декабре 2011 года. В небольших деревнях рушились жилые дома, в то время как проживающие в Новокузнецке и Абакане россияне ощущали на себе сильные толчки, наблюдая покачивающиеся люстры и падающую мебель.

Землетрясения за последние 30 дней магнитудой от 4 баллов

Землетрясения в Мире

красные — последние 24 часаоранжевые — от 24 до 48 часовжелтые — за последние 3—17 днейфиолетовые — от 2 недель до 5 лет

Индонезийский регион

Live Earthquake Mashup

Отличная карта, прямой аналог Гугл планеты с прикрученными KML файламиhttp://www.oe-files.de/gmaps/eqmashup.html

Карта тектонических плит мира

Ученые составили карту наиболее крупных тектонических плит:

  • Австралийская;
  • Аравийский субконтинент;
  • Антарктическая;
  • Африканская;
  • Индостанская;
  • Евразийская;
  • Плита Наска;
  • Плита Кокос;
  • Тихоокеанская;
  • Северо- и южно-американские платформы;
  • Плита Скотия;
  • Филипинская плита.

Из теории мы знаем, что твердая оболочка земли (литосфера) состоит не только из плит, формирующих рельеф поверхности планеты, но и из глубинной части — мантии. Континентальные платформы имеют толщину от 35 км (на равнинных территориях) до 70 км (в зоне горных массивов). Учеными доказано, что наибольшую толщину имеет плита в зоне Гималаев. Здесь толщина платформы достигает 90 км. Самая тонкая литосфера находится в зоне океанов. Ее толщина не превышает 10 км, а в некоторых районах этот показатель равняется 5 км. На основании информации о том, на какой глубине находится эпицентр землетрясения и какова скорость распространения сейсмических волн, производятся расчеты толщины участков земной коры.

Карта разломов и сейсмически опасных мест

На карте обозначены места сейсмически опасных зон. Зоны выделены цветом – от зеленого до красного. Чем ближе цвет к красному, тем более высока вероятность сильных и разрушительных землетрясений. Карта создана на данных землетрясений происшедших с 1973 года.
На карте обозначены атомные электростанции. Нахождение атомной электростанции в сейсмически опасной зоне увеличивает опасность для населения.

Градация опасности. Включить/выключить

Шкала сейсмоактивности. Шкала Рихтера. Землетрясение по видам активности.

Шкала Меркалли Шкала Рихтера Видимое действие
1 -4.3 Вибрацию от землетрясения регистрируют только приборы
2 Колебания землетрясения ощущаются при стоянии на лестнице
3 Толчки от землетресения ощущаются в закрытых помещениях, легкие колебания предметов
4 4.3-4.8 Звон посуды, качание деревьев, толчки землетрясения ощущаются в стоящих автомобилях
5 Скрип дверей, пробуждение спящих, переливание жидкости из сосудов
6 4.8-6.2 При землетрясении неустойчивая ходьба людей, повреждения окон, падение картин со стен
7 Трудно стоять, осыпается плитка на домах, от землетрясения большие колокола звенят
8 6.2-7.3 Повреждение дымоходов, повреждение канализационных сетей при таком землетрясении
9 Всеобщая паника от землетрясения, повреждения фундаментов
10 Большинство строений повреждены*, крупные оползни, реки выходят из берегов
11 7.3-8.9 Изгиб ж/д путей, повреждения дорог, большие трещины в земле, падение камней
12 Полные разрушения, волны на поверхности земли, изменения в течении рек, плохая видимость
* Специально сконструированные здания с защитой от землетрясений способны выдержать толчки до 8.5 баллов по шкале Рихтера
Сила землетрясения по шкале Рихтера Количество энергии при землетрясении (эквивалент тринитротолуола), т
4 6
5 199
6 6270
7 199’000
8 6’270’000
9 99’000’000


Сейсмические волны и активность

Землетрясение всегда имеет свой эпицентр – область, где происходит движение и разлом земной коры. В этом месте подземные толчки ощущаются наиболее сильно. При колебаниях выделяется большое количество энергии (как, например, при взрыве), которая от эпицентра расходится в более отдаленные регионы в виде особых сейсмических волн, формирующихся под земной корой. Движение их происходит как в твердых слоях Земли, так и в водной, и атмосферной оболочке планеты.

Объемные

Этот тип волн проходит через недра Земли, сталкиваясь по пути с горными породами различной плотности, что вызывает преломление волны, влияет на скорость ее распространения.

Выделяют 2 разновидности объемных волн, это:

  1. Первичные, похожие на звуковые волны. Частицы энергии, из которых они состоят, способны передвигаться вперед или назад, проходить сквозь твердую материю горных пород, способствуя их разрушению. Такие волны имеют наибольшую скорость, которая зависит от глубины волнового течения (чем глубже в недрах проходит волна, тем выше этот показатель).
  2. Вторичные, являются более медленными. Частицы энергии движутся перпендикулярно движению основного первичного потока. Примечательно, что вторичные волны не могут проникать сквозь жидкость, именно по этой причине объекты, находящиеся в эпицентре подземного толчка в воде, подбрасываются вертикально, словно при столкновении с подводными препятствиями.

Поверхностные

Поверхностный тип считается наиболее разрушительным, способным разбивать даже самые твердые горные массивы. Такие колебания похожи на волны воды в море, но в отличие от них они распространяются по поверхности планеты, охватывая значительные ее регионы. Такие волны характеризуются сравнительно небольшой скоростью, но весьма значительной амплитудой, низкой частотой, высокой продолжительностью существования.

Выделяют 2 типа поверхностных колебаний:

  1. Волны Рэлея имеют меньшую скорость, характеризуются эллиптическим движением частиц.
  2. Волны Лява — частицы движутся с большей скоростью в горизонтальной плоскости, перпендикулярной основному течению энергии.

Выводы и предложения

На картах ОСР-2016 нормативная сейсмичность радикально изменена без необходимого обоснования и всестороннего анализа возможного влияния этих изменений на сейсмобезопасность населения, обороноспособность страны, затрат на антисейсмические мероприятия при реконструкции (капитальном ремонте) существующих сооружений и строительстве новых объектов.

Сопоставление карт ОСР-2016 с картами ОСР-2015 позволяет сделать вывод об отказе авторов новых карт от ранее принятых нормативных оценок сейсмичности Северной Евразии. При этом возникает вопрос о соответствии предложенных ими оценок сейсмичности действительной сейсмотектонической обстановке на территории России и цене ошибок, называемых «пропуском цели».

Предположим, как это считают авторы карт ОСР-2016, что на картах ОСР-2015 ошибочно занижена нормативная сейсмичность для Барнаула, Керчи, Красноярска, Симферополя, Ставрополя, Хабаровска, Читы, Южно-Сахалинска. В этом случае за последние 20 лет при строительстве зданий и сооружений в этих и в некоторых других городах антисейсмические мероприятия выполнялись в недостаточном объеме в тех случаях, когда карты ОСР-97 (ОСР-2015) не уточнялись в сторону повышения нормативной сейсмичности с помощью УИС (ДСР).

Такие объекты при прогнозируемых новыми картами в этих и в ряде других городов повышенных уровнях интенсивности землетрясений могут быть разрушены или сильно повреждены. Для исправления ошибок типа «пропуска цели» потребуются крайне затратные мероприятия по усилению существующей застройки, а также увеличение расхода ресурсов при новом строительстве. В связи с этим повышение нормативной сейсмичности для каждого города должно предваряться технико-экономической экспертизой с обязательным привлечением региональных геологических и сейсмологических организаций.

В тоже время на одной, двух, иногда трех картах ОСР-2016 понижена нормативная сейсмичность для Грозного, Йошкар-Олы, Казани, Кызыла, Махачкалы, Назрани, Нальчика, Севастополя, Петропавловска-Камчатского, Чебоксар, Якутска, многих областных и районных центров, в том числе в местах известных разрушительных современных, исторических и палеоземлетрясений.

Снижение уровня антисейсмической защиты зданий и сооружений при новом строительстве увеличивает вероятность отказа объектов при разрушительных землетрясениях с летальными и санитарными потерями. Поэтому к уменьшению нормативной сейсмичности территории города (стройки) по экономическим соображениям можно прибегать только в исключительных случаях, когда соответствующее изменение на картах ОСР подтверждено данными натурных геологических и сейсмологических исследований, включая полевые работы на местности, идентификацию глубинных разломов по радиоактивным маркерам, датировку палеоземлетрясений радиоуглеродным методом и глубинную сейсморазведку. Включенные в карты ОСР-2016 изменения этим условиям не удовлетворяют.

Карты ОСР-2016 необходимо пересмотреть в плановом порядке с исключением всех случаев необоснованного занижения и завышения нормативной сейсмичности с привлечением к этой работе организаций РАН, включая региональные сейсмологические организации, а также специалистов по сейсмостойкости сооружений.

Пересмотр карт ОСР-2016 должен выполняться по утвержденному Минстроем РФ техническому заданию, согласованному Минобороны, МЧС, Минтрансом, другими заинтересованными ведомствами.

Впредь до окончания пересмотра карт ОСР-2016 целесообразно использовать при проектировании промышленно-гражданских, транспортных и гидротехнических объектов карты ОСР-2015.

Список литературы

1. Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб 1:8 000 000. Объяснительная записка и список городов и населенных пунктов, расположенных в сейсмоопасных районах. В.И.Уломов, Л.С.Шумилина. М., 1999.

2. Уломов В.И. Актуализация нормативного сейсмического районирования в составе единой информационной системы «Сейсмобезопасность России». Вопросы инженерной сейсмологии. 2012. Т.39, № 1, с.5-38.

3. СП 14.13330.2018. Приложение А. Общее сейсмическое районирование территории Российской Федерации ОСР-2015, 2018.

4. СП 14.13330.2018. Приложение А. Общее сейсмическое районирование территории Российской Федерации 2016 (ОСР-2016), 2020.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector